CSAW ESC Final - Report

Theo DUFOUR Tom MALOSSE Nail BIBIMOUNE
Hackcess Hackcess HACKCESS
IUT ROANNE IUT ROANNE IUT ROANNE

Roanne, France
theodufour@hackcess.org

Roanne, France
tommalosse@hackcess.org

Roanne, France
mailbibimoune@hackcess.org

Mateo FERREIRA
Hackcess
IUT ROANNE
Roanne, France
mateoferreira@hackcess.org

I. INTRODUCTION
A. Context

This report follows the qualification of our team,
Hackcess, at the CSAW ECS 2023 final. We had the chance
to be announced as a finalist on October 3rd and
subsequently received the Arduino board and these various
components, thus signing the start of the competition.

B. Objectives

We will present in this report our achievements of the
various challenges that have been proposed and spread over
3 different weeks, the difficulty of these being increasing.

C. Hardware and Tools
Here is a list of our equipment :

Elegoo UNO R3

PCF8574 (GPIO Expander)

Buzzer

Keypad

Haptic (Vibration motor)
Microphone

Relay

ESC board

8 Segment display

Logic analyzer (24MHz, 8 channels)

II. CHALLENGES WEEK 1

A. All White Party

The first challenge was called All White Party and here
is its description:

“You and your friends have just arrived at the exclusive
Hollywood "All-White Party", but you're missing
invitations. You found a missing badge outside the entrance
gate, but after scanning at the gate, the security system is
asking you for a username and 10-digit password PIN
credentials. Can you uncover the secret passcode, blend in
with the glamorous crowd, and find a way inside the party to
experience the glitz and glamor in a reasonable amount of
time.”

What we notice quickly is the last word of the
description, time, which is written in italics, as if to
accentuate the latter...

First, we had to inject the .hex into the arduino, for that
we used avrdude. It's the same procedure for all competition
challenges.

-V -V -patmega328p -carduino -P COMS -b115200 -D -Uflash:w:
C:\Users\UseriDesktop\COURSIUT\HACKESS\CSAW\Al1WhiteParty.hex:i

Fig. 1. Command to inject hex code

After injecting the hex code into the arduino, we connect
via the serial interface and we arrive at a username request.

= [Rkkkkkk HeR K ek ko e et dodk Kkkkk [
— Challenge: All White Party

o frExkxE Skt Sk Kk dx Sk dokk Sk [
— Welcome!! Based on our records, your account has been located.

— Enter account username 2

— Invalid username. Please try again:

Fig. 2. Serial display

With this word, “time”, as our only clue, we have
therefore reflected on attacks related to time. The one that
came to mind is that of response time changing according to
input.

The username would be processed letter by letter, and if
the first letter is good, it checks the next one and so on, so if
we send 2 letters, and the first one is good, the processing
time will be longer, since the arduino will have analyzed 2
letters and not only one.

So we imagined a brute force attack to realize our
hypothesis, testing all the letters of the alphabet in lower and
upper case, starting with "Aq", "Bq", "Cq"... and once the
letter that takes the most time to be processed was found.

n.n

For example, if the first letter is "c", we continue, "cAq",

nn

"cBq", "cCq"...

import serial, string
import time

def start_chronometer():
= time.time()

t_t
return start_time

def stop_chronometer(start_time):
nd_time = time.time()

, 115200)

while line !=
print(line)

line =

chars = list(string.ascii_lowercase + string.ascii_uppercase)
def find_usr(base='"):
s = {}
for c in chars:
usr = bytes(base,) + bytes(c,) +
print({usr}")
stime =
board.
=l
while
etime = s er(stime)
times [c]
print(f'[{etime} {resline}')
ted_ s = sorted(times.i 1s(), key=lambda item: em[1], verse=True)
nd_ _ = sorted_items[0]
urrent_| = ba + found_cha
print({current_usr}")
return nd_usr(base + u ar)

Fig. 3. Code to brute force username

After a few minutes, we got our username: Barry

Welcome !! Based on our records, your account has been located.
Enter account username :

10-digit MFA code sent to your phone. Enter 10-digit Pin on Keypad.
0000000000

Password SHA does not match:

32 117 74 65 206 Please try again

Jldddld

Fig. 4. Serial output after finding the username

Now we need a password.
Our only new index is this number: 32 117 74 65 206

We tried to use a technique similar to the previous one,
using the response time of the arduino to find 1 to 1 the
code, without success.

We did various searches with this number, was it a
number, a hidden message, we found nothing conclusive. So
we passed the first stage of the challenge, but remain stuck
here.

To eliminate this side channel attack, make sure that the
username check is performed on the entire username entered
directly, and not letter by letter.

B. Bluebox

This week's second challenge is called: Bluebox and
here's its description :

“In a secret underground lair, you and your team uncover
the hardware for the legendary blue box hack. To unlock the
secrets of the lair, you must decode telephone frequencies
and recreate the iconic audio tones in order to reveal the
flag. It's time to unearth the blue box technological history
before the authorities arrive to shutdown your operation”

First, we did some blind tests to find out how the
challenge worked.

We noticed that when we pressed the keys to enter the
right combination, each key emitted a certain audible
frequency.

We then realized that the original message being played
was simply the reproduction of the keys being played.

From then on, we recorded each sound of each key (we
had 3 attempts to record the different sounds, the 4th playing
a new sound, it was not possible to record the sound).

Next, we recorded the sequence, then at each intonation
we compared our recordings of each key to note the
associated number.

From there, we sent off our sequence, but we didn't
expect to receive a second, longer sequence of 8 intonations
(which was originally 4).

We repeated the same process after a few unsuccessful
attempts, then arrived at the flag.

= [xFFkkkkkkkKkkkkKkkkkkk YOU BEAT THE CHALLENGE!!!
— Congrats! Please add the flag to the report...
— Flag: B339B009

= [REERk kR R Rk kR kAR kdkk CONGTAtS! |1 dkkkkdkbksoookk ok /

)

Fig. 5. Serial output of the flag

Challenge Flag: "B339B009"

I1I. CHALLENGES WEEK 2

A. Operation SPItFire

For the first of the 2nd week we have a challenge called
"Operation SPItFire" :

“Amid the digital battleground, you, an accomplished
spy, are assigned the mission of deciphering an intricate
maze of wire traffic acquired from the mysterious hacker
collective, SPItFire. To assist your efforts, your remote team
has gained access to a device linked to one of SPItFire's
surveillance cameras, allowing you to clandestinely
exchange messages. Your objective: find out how to
communicate with the security camera, and acquire the
coveted password flag that can be used to infiltrate their
security footage.”

When we started the challenge, we observed the
emission of sounds and the illumination of the LED on the
Elegoo UNO R3 relay board. Initially , we thought about the
possibility that it might be Morse code, but we ultimately
opted to use a frame analyzer because it could be a binary
code or something similar so use it appeared to be a more
straightforward and efficient method.

Here’s how we proceeded :
Step 1 : Frame Analysis with a Logic Analyzer

For Operation Spitfire , we initiated by analyzing the
frames using a logic analyzer. Here’s a picture of the wiring :

Fig. 6. Measurement wiring with logic analyzer of relay signal

This step provided us a detailed view of the
communication between the components of the system
under investigation.

L I iy

Fig. 7. Logic analyzer output on relay signal pin

Step 2 : Decomposing the “Hello” Frame into 8-Bit Packets

After capturing the frames, we extracted the “Hello”
frame for a more in-depth analysis. This frame was
represented as binary sequence, as follows :

10100101 00000101 01001000 01000101 01001100
01001100 01001111 00111110
We segmented this binary sequence into 8-bit

packets,which allowed us to identify each part of the “Hello”
frames as follows:

e Header: 10100101
e Length: 00000101 (5 characters)
e H: 01001000
e E: 01000101
e L: 01001100
e L: 01001100
e O: 01001111

e CRC-8: 00111110

This decomposition enabled a more detailed analysis of
the frame, helping us understand its structure and the date it
conveyed .

Subsequently, we realized that we needed to send the
word ‘FLAG’. We decomposed it into binary, but we
initially faced uncertainty about how to calculate the
checksum. To address this, we began by developing a
Python program for a brute-force approach.

import
from import

)

for i in range(256):
+= 1
= format(i,)
bin = +
((bin). ().0). 0.
{ } {bin} | {)

print(

while #*
print()

= . O

if in str(DE
print(
break
elif in str():
print()]
print()

print()
print(o (@)

Fig. 8. CRC-8 brute force program

Later, through a more efficient second method, we learned
how to calculate the CRC-8 checksum using the
hexadecimal representation of the “FLAG” with the website

https://crcealc.com/ :

a5 84 46 4c 41 47

Input: O ASCIl @ HEX Output: @ HEX

| CRC-8
Algorithm Result Check
CRC-8 BxDA exF4

Fig. 9. CRC-8 automatic calculator

The hexadecimal sequence “a5 04 46 4c 41 47 represents
a data frame. In this sequence, “da” is the calculated
checksum that we discovered through a brute-force approach
and the website. By sending the complete hexadecimal
frame, including “da”, the system was able to verify and
authenticate the data. As a result, the system interpreted the
data correctly, and the decoded message or flag was
“SPyBRUNGA”. The successful verification of the checksum
“da” allowed for the accurate retrieval of the intended
message from the data frame. The binary representation of
“SPyBURNGJ” is as follows:

S: 01010011
P: 01010000
y: 01111001
B: 01000010
U: 01010101
R: 01010010
N: 01001110
d: 01100100

To mitigate this side-channel attacks at the checksum level,
consider using checksum algorithms resistant to such
attacks. In addition, it’s to encrypt the message to prevent

https://crccalc.com/

unauthorized access. Keeping the message in plaintext can
make it easier for potential attackers to exploit it, so
encryption should be a crucial part of securing the data and
therefore not to leave it clear.

Challenge Flag: "SPyBRUNd"

B. czNxdTNuYzM

Last challenge of this second week, "czZNxdTNuYzM" a
rather uncommon name at first glance with description:

“A cryptic dance of numbers unfolds before the eyes. Can
you harmonize with the rapid rhythms of this challenge? In
this realm of numbers, a symphony can conquer even the
swiftest of mysteries.*

By launching this challenge, a series of numbers scrolled
very quickly on the screen of the arduino, so our first
attempt was to record with our phones this suite, and then
watch slowly the numbers received.

We unfortunately could not get anything out of it.

Another attempt was to try to communicate with the
screen, to read exactly the data that was coming, which also
did not work.

IV. CHALLENGES WEEK 3

A. Sock and Roll

We did not take the time for this challenge, being
focused on the others, so we have nothing to present.

B. Vender Bender

The last challenge in this competition is "Vender
Bender":

“You roll up to that vending machine, and it's making a
soft hum, like a well-tuned engine, promising you a sweet
snack for your taste buds. You eyeball the colorful snacks,
deciding if you want them chips for a salty crunch or that
chocolate bar for a sweet fix. You've got some coins clinking
in your hand, ready to drop 'em in and get that engine
running. You pause, and think if there is a better way... a free
way. Maybe if you trigger an error before the snack is
dispensed, you can get your money back? Can you pump the
brakes when you hear the gears whirring, and make off with
your snack like it's a freshly greased wrench? Then let's take
those taste buds on a delicious test drive.”

The first clues that enabled us to solve this challenge
were the part of the engine noise mentioned in the challenge
description and the message sent to the arduino's serial
monitor: "After credit is received, send "ERR" to jam the
motors.".

—-> Challenge: Vender Bender
-

-> After credit is reciever, send "ERR" to jam the motors.
-> Motor movement SUCCESS. Snack was dispensed for $2. Insert another credit for a new snack.
—> After credit is reciever, send "ERR" to jam the motors.
-> Motor movement SUCCESS. Snack was dispensed for $2. Insert another credit for a new snack.

121
121
ilg
21:
1
1
1

23:21:

Fig. 10. Serial output on monitor start-up

Then we had to deduce the right timing to send the
message to jam the engine. For this step, we carried out
several unsuccessful tests such as spamming the "ERR"
message through serial, sending the message during the
engine noise generated by the relay and also when the
engine (relay) was not active. We also connected the relay
pins to a logic analyzer to get a better view of the signal
emitted by the relay. With the help of these various tests, we
finally found the right timing, i.e. the precise moment when
the motor noise was triggered.

After having successfully jammed the motor for the first
time, the serial monitor sends us back a message telling us
that the engine has been successfully jammed and that it's on
its first retry of 5 attempts. This is a clear indication that we
need to jam the engine 5 times in a row to succeed in this
challenge.

This part of the challenge was the most complex, given
that the intervals between each of the 5 motor jams were
different, and some could be very short.

We first tried to make a python script that would send the
"ERR" message through the serial port manually by pressing
the ENTER key, but without success, as the intervals were
too short or too varied between some jams.

In a second step, we tried to use the sound factor
generated by the relay to send the jam message at the right
time with a python script using the internal microphone and
taking into account that the relay generates noise both at
start-up and at the end. Unfortunately, there were too many
additional factors preventing accurate detection, such as
ambient noise, the faintness of the sound emitted by the
relay and the sensitivity of the microphone.

Finally, we used a python script based on the opencv and
numpy libraries to detect the status of the led (on and off)
using a camera. This script initiated a serial connection with
the arduino, then sent the message "ERR" each time the led
was switched on, and returned the serial output following
this action.

import cv2
import numpy as np
import serial

Initialize the camera
cap = cv2.VideoCapture(@) # Use the default camera

Variables to keep track of LED state
led_state = False

board = serial.Serial(, 115200)
print()
print(board.readline())

input()
count = 0@
while True:
ret, frame = cap.read()
if not ret:
break
Extract the red color channel
red_channel = framel:, :, 2]
Use thresholding to detect LED changes
_, binary = cv2.threshold(red_channel, 50, 255, cv2.THRESH_BINARY)
Count the number of white pixels in the binary image
white_pixel_count = np.sum(binary == 255)
Set a threshold for considering the LED as on or off
threshold = 1000
Check if the LED state has changed
if white_pixel_count > threshold and not led_state:
led_state = True

print()

if count != 5:
Sending jam message and returning the serial output
board.write()
print(board. readline())

else:

while True:
print(board.readline())
elif white_pixel_count <= threshold and led_state:
led_state = False
print()

Display the camera feed

cv2.imshow(, frame)
if cv2.waitKey(1) & OxFF == ord("q"):
break

Release the camera and close the OpenCV window
cap.release()
cv2.destroyAllWindows ()

Fig. 11. Python script detecting LED state change

After 5 iterations, the flag was successfully returned to us.
This light factor is still unstable due to ambient light factors,
but can be greatly improved and made more precise by
bringing the LED as close as possible to the camera
detecting the change of state.

LED turned on

b'Motor Error 5902 Reported. Slight but not signifigant motor movement detected. Retry Attempt 1/5\r\n’
LED turned off

LED turned on

b'Motor Error 5902 Reported. Slight but not signifigant motor movement detected. Retry Attempt 2/5\r\n'
LED turned off

LED turned on

b'Motor Error 5902 Reported. Slight but not signifigant motor movement detected. Retry Attempt 3/5\r\n‘
LED turned off

LED turned on

b'Motor Error 5902 Reported. Slight but not signifigant motor movement detected. Retry Attempt 4/5\r\n'
LED turned off

LED turned on

b'Motor Error 5902 Reported. Slight but not signifigant motor movement detected. Retry Attempt 5/5\r\n'
LED turned off

LED turned on

b /akskokkpriokkkktrdkkkk YOU BEAT THE CHALLENGE!!! skl oRRok/ \ T\ N

LED turned off

LED turned on

b'Place the following flag in your report\r\n'

LED turned off

LED turned on

b mMmCaNdY\r\n"*

LED turned off

Fig. 12. Serial output after jamming engine 5 times

To mitigate this kind of side channel attack, implementing a
robust error handling mechanism could prevent exploitation

of errors. In the case of the "Vender Bender" challenge,
sending "ERR" to jam the motor was possible due to a
vulnerability in error handling. In order to prevent the timing
aspect of this side channel attack, we could design a more
secure management of payment in the machine and of
product distribution during payment, for example by
preventing the engine from engaging once the snack has
been selected and the credit inserted.

Challenge Flag: "mMmCaNdY"

